알고리즘 트레이딩의 기초 : 개념과 예제.
알고리즘은 작업 또는 프로세스를 수행하기 위해 명확하게 정의 된 지침 집합입니다.
알고리즘 트레이딩 (자동 트레이딩, 블랙 박스 트레이딩, 또는 단순한 알 고 트레이딩)은 a 컴퓨터가 불가능한 속도와 빈도로 이익을 창출하기 위해 거래를하기 위해 정의 된 명령어 세트를 따르도록 프로그래밍 된 컴퓨터를 사용하는 프로세스입니다. 인간 상인. 정의 된 규칙 집합은 타이밍, 가격, 수량 또는 모든 수학적 모델을 기반으로합니다. 상인에 대한 이익 기회와는 별도로, 알 고향 거래는 시장을보다 유동적으로 만들고 무역 활동에 대한 정서적 인적 영향을 배제함으로써보다 체계적인 거래를 만듭니다. (자세한 내용은 올바른 알고리즘 트레이딩 소프트웨어 선택을 확인하십시오.)
거래자가 다음과 같은 간단한 거래 기준을 따랐다 고 가정 해보십시오.
50 일 이동 평균이 200 일 이동 평균보다 커지면 50주의 주식을 매수하십시오. 50 일 이동 평균이 200 일 이동 평균보다 낮아지면 주가는 주식의 주식을 매도합니다.
이 두 가지 간단한 지침 세트를 사용하면 정의 된 조건이 충족 될 때 주가 및 이동 평균 지표를 자동으로 모니터링하고 구매 및 판매 주문을하는 컴퓨터 프로그램을 작성하기 쉽습니다. 상인은 더 이상 실시간 가격 및 그래프를 감시하거나 수동으로 주문할 필요가 없습니다. 알고리즘 거래 시스템은 거래 기회를 정확하게 식별함으로써 자동으로 거래를 수행합니다. 이동 평균에 대한 자세한 내용은 단순 이동 평균을 참조하십시오.
[입증 된 전략과 궁극적으로 알 고리즘 트레이딩 시스템으로 작업 할 수있는 포인트 전략에 대해 자세히 알아 보려면 Investopedia Academy의 Become a Day Trader 코스를 확인하십시오. ]
알고리즘 트레이딩의 이점.
Algo-trading은 다음과 같은 이점을 제공합니다.
가능한 최상의 가격으로 실행되는 거래 신속하고 정확한 거래 주문 배치 (따라서 원하는 수준의 실행 가능성 높음) 중요한 가격 변동을 피하기 위해 정확하고 즉각적인 거래 시간 단축 트랜잭션 비용 절감 (아래의 구현 부족 예 참조) 여러 항목에 대한 동시 자동 점검 시장 조건 거래 배치시 수동 오류 위험 감소 사용 가능한 과거 및 실시간 데이터를 기반으로 알고리즘 백 테스팅 정서적 및 심리적 요인에 기반한 인적 자원 거래자의 실수 가능성 감소.
현재의 고액 거래의 가장 큰 부분은 고주파 거래 (high frequency trading, HFT)입니다. 이 프로그램은 미리 프로그래밍 된 지침에 따라 여러 시장 및 여러 결정 매개 변수에 걸쳐 매우 빠른 속도로 대량 주문을 활용하려고 시도합니다. (고주파 거래에 대한 자세한 내용은 고주파 거래 (HFT) 회사의 전략과 비밀을 참조하십시오.)
Algo-trading은 다음과 같은 다양한 거래 및 투자 활동에 사용됩니다.
주식을 대량 구매하지만 불특정 다수의 투자로 주식 가격에 영향을 미치고 싶지 않은 중장기 투자자 또는 매수 측면 기업 (연기금, 뮤추얼 펀드, 보험 회사). 단기 거래자 및 매도자 측 참가자 (시장 형성 자, 투기자 및 중개인)는 자동 거래 실행의 혜택을받습니다. 또한, algo-trading은 시장에있는 판매자에게 충분한 유동성을 창출하는 데 도움을줍니다. 체계적인 거래자 (추종자, 쌍 거래자, 헤지 펀드 등)는 거래 규칙을 프로그래밍하고 프로그램이 자동으로 거래되도록하는 것이 훨씬 더 효율적이라는 것을 알 수 있습니다.
알고리즘 거래는 인간 상인의 직감이나 본능에 기반한 방법보다 적극적인 거래에 대한 체계적인 접근 방식을 제공합니다.
알고리즘 트레이딩 전략.
알고리즘 거래를위한 모든 전략에는 향상된 수익 또는 비용 절감 측면에서 수익성이 확인 된 기회가 필요합니다. 다음은 algo-trading에서 사용되는 일반적인 거래 전략입니다.
가장 일반적인 알고리즘 트레이딩 전략은 이동 평균, 채널 이탈, 가격 수준 이동 및 관련 기술 지표의 추세를 따릅니다. 이러한 전략은 예측이나 가격 예측을하지 않기 때문에 알고리즘 거래를 통해 구현하는 가장 쉽고 간단한 전략입니다. 거래는 바람직한 추세의 발생을 기반으로 시작되며, 이는 예측 분석의 복잡성에 빠지지 않고 알고리즘을 통해 구현하기 쉽고 간단합니다. 위에서 언급 한 50 일과 200 일 이동 평균의 예는 인기있는 추세 전략입니다. (추세 거래 전략에 대한 자세한 내용은 추세를 활용하는 간단한 전략을 참조하십시오.)
한 시장에서 더 낮은 가격에 이중 상장 주식을 매수하고 다른 시장에서 더 높은 가격으로 동시에 매각하는 것은 가격 차이를 무위험 수익 또는 차익 거래로 제공합니다. 가격 차이가 수시로 존재하기 때문에 동일한 작업이 주식 대 선물 상품에 대해 복제 될 수 있습니다. 이러한 가격 차이를 식별하고 주문을하는 알고리즘을 구현하면 효율적인 방식으로 수익성있는 기회를 얻을 수 있습니다.
인덱스 펀드는 보유 자산을 각각의 벤치 마크 지수와 동등하게 유지하기 위해 재조정 기간을 정했습니다. 이는 인덱스 펀드 재조정 직전에 인덱스 펀드의 주식 수에 따라 20-80의 베이시스 포인트 이익을 제공하는 예상 거래를 활용하는 알고리즘 트레이더에게 수익성있는 기회를 창출합니다. 이러한 거래는 적시 실행과 최적의 가격을 위해 알고리즘 거래 시스템을 통해 시작됩니다.
델타 중립적 인 거래 전략과 같이 입증 된 많은 수학 모델은 포트폴리오 델타가 0으로 유지되도록 양수 및 음수 델타를 상쇄하기 위해 거래가 이루어지는 옵션과 기본 보안의 조합에 대한 거래를 허용합니다.
평균 회귀 전략은 자산의 고가와 저가가 주기적으로 평균값으로 되돌아가는 일시적인 현상이라는 생각에 기반합니다. 가격 범위를 식별하고 정의하고이를 기반으로 알고리즘을 구현하면 자산 가격이 정의 된 범위를 벗어날 때 거래가 자동으로 배치됩니다.
볼륨 가중 평균 가격 전략은 대량의 주문을 분해하고 주식 관련 과거 볼륨 프로파일을 사용하여 동적으로 결정된 작은 주문 청량을 출시합니다. 목표는 VWAP (Volume Weighted Average Price)에 가까운 주문을 실행하여 평균 가격으로 이익을 얻는 것입니다.
시간 가중 평균 가격 전략은 대량 주문을 해체하고 시작 시간과 종료 시간 사이의 균등하게 나뉘어 진 시간 슬롯을 사용하여 동적으로 결정된 작은 주문 청량을 출시합니다. 목표는 시작 및 종료 시간 사이의 평균 가격에 가까운 주문을 실행하여 시장 영향을 최소화하는 것입니다.
거래 주문이 완전히 채워질 때까지이 알고리즘은 정의 된 참여율과 시장에서 거래되는 거래량에 따라 부분 주문을 계속 전송합니다. 관련 "단계 전략"은 사용자 정의 시장 볼륨 비율로 주문을 보내고 주가가 사용자 정의 수준에 도달하면이 참여율을 높이거나 낮 춥니 다.
구현 부족 전략은 실시간 시장을 거래함으로써 주문의 실행 비용을 최소화함으로써 주문 비용을 절감하고 지연된 실행의 기회 비용으로부터 이익을 얻는 것을 목표로합니다. 이 전략은 주가가 호의적으로 움직일 때 목표로하는 참여율을 높이고 주가가 반대로 움직일 때 그것을 낮출 것입니다.
다른 측면에서 "사건"을 식별하려고 시도하는 몇 가지 특별한 클래스의 알고리즘이 있습니다. 예를 들어 판매 측 시장에서 사용되는 이러한 "스니핑 알고리즘"은 대규모 주문의 구매 측면에서 알고리즘의 존재를 식별 할 수있는 내장 된 인텔리전스를 갖추고 있습니다. 이러한 알고리즘을 통한 탐지는 시장에서 대량 주문 기회를 파악하고 더 높은 가격으로 주문을 작성함으로써 이익을 얻을 수 있도록 도와줍니다. 이것은 때로는 하이테크 전방 주행으로 확인됩니다. (고주파 거래 및 사기 행위에 대한 자세한 내용은 다음을 참조하십시오 : 주식을 온라인으로 구입할 경우 HFT에 관여 함)
알고리즘 거래에 대한 기술적 요구 사항.
컴퓨터 프로그램을 사용하여 알고리즘을 구현하는 것이 마지막 부분으로, 백 테스트가 있습니다. 문제는 식별 된 전략을 주문 거래 계정에 액세스 할 수있는 통합 된 전산 프로세스로 변환하는 것입니다. 다음이 필요합니다.
필요한 거래 전략, 고용 된 프로그래머 또는 미리 만들어진 거래 소프트웨어를 프로그래밍하기위한 컴퓨터 프로그래밍 지식 주문을하기위한 네트워크 연결 및 거래 플랫폼에 대한 액세스 주문을 할 수있는 기회를 알고리즘이 모니터 할 시장 데이터 피드에 액세스 능력 및 인프라 실제 시장에 출시되기 전에 빌드 된 시스템을 백 테스팅하기 알고리즘에서 구현 된 규칙의 복잡성에 따라 백 테스트를위한 사용 가능한 과거 데이터.
다음은 포괄적 인 예입니다 : Royal Dutch Shell (RDS)은 암스테르담 증권 거래소 (AEX)와 런던 증권 거래소 (LSE)에 상장되어 있습니다. 차익 거래 기회를 식별하는 알고리즘을 구축해 보겠습니다. 흥미로운 관찰은 거의 없습니다.
AEX는 유로화로 거래되며, LSE는 스털링 파운드로 거래됩니다. AEX는 1 시간의 시간차로 인해 LSE보다 1 시간 빠르며, 다음 두 시간 동안 동시에 거래가 이루어지며 AEX가 마감되면서 지난 1 시간 동안 LSE에서만 거래됩니다 .
이 두 시장에 상장 된 Royal Dutch Shell 주식에 대해 서로 다른 통화로 차익 거래를 할 수 있는지 알아볼 수 있습니까?
현재 시장 가격을 읽을 수있는 컴퓨터 프로그램 LSE 및 AEX의 가격 피드 GBP-EUR 환율에 대한 외환 환율 피드 주문을 올바른 교환으로 전달할 수있는 주문 배치 기능 과거 가격 피드에 대한 백 테스트 기능.
컴퓨터 프로그램은 다음을 수행해야합니다.
두 거래소의 RDS 주식의 수신 가격 피드를 읽으십시오. 사용 가능한 환율을 사용하여 한 통화의 가격을 다른 통화로 변환하십시오. 유익한 기회로 이어지는 충분히 큰 가격 불일치 (중개 비용을 할인)가 존재한다면, 낮은 가격의 거래소에서 주문하고 높은 가격의 거래소에서 주문을 판매합니다. 원하는대로 주문을 실행하면 차익 거래 이익이 발생합니다.
간단하고 쉬운! 그러나 알고리즘 트레이딩의 실행은 유지 관리 및 실행이 간단하지 않습니다. 알 고가 생성 한 거래를 배치 할 수 있다면 다른 마켓 참여자도 마찬가지입니다. 따라서 가격은 밀리 초 및 심지어 마이크로 초 단위로 변동합니다. 위의 예에서 구매 주문 거래가 실행되면 어떻게되지만 주문이 시장에 출시 될 때까지 판매 가격이 변경되지 않습니다. 당신은 개방적인 자세로 앉아 결국 귀하의 차용액 전략을 쓸모 없게 만들 것입니다.
시스템 장애 위험, 네트워크 연결 오류, 거래 주문과 실행 간의 시간 지연, 그리고 무엇보다 불완전한 알고리즘과 같은 추가 위험과 문제점이 있습니다. 알고리즘이 복잡할수록 더 엄격한 백 테스팅이 필요합니다.
결론.
알고리즘의 성능을 정량적으로 분석하는 것은 중요한 역할을하므로 비판적으로 검사해야합니다. 돈을 쉽게 벌기위한 개념을 가진 컴퓨터의 도움을 받아 자동화하는 것은 흥미로운 일입니다. 그러나 시스템을 철저히 테스트하고 필요한 한계를 설정해야합니다. 분석적 거래자는 올바른 전략을 확실하게 구현하는 데 자신감을 갖기 위해 스스로 프로그래밍 및 시스템을 학습하는 것을 고려해야합니다. 신중한 사용과 철저한 거래로 수익성 높은 기회를 창출 할 수 있습니다. (자세한 내용은 자신의 Algo 거래 로봇을 코딩하는 방법을 참조하십시오.)
QuantStart.
빠르게 성장하는 소매점 퀀텀 트레이더 커뮤니티를 지원하는 Quantcademy 개인 회원 포털에 가입하십시오. 당신은 당신의 가장 중요한 퀀트 트레이딩 질문에 대답 할 준비가되어있는 지식이 풍부하고 마음이 맞는 퀀트 트레이더 그룹을 찾을 수 있습니다.
퀀트 트레이딩에 관한 나의 eBook을 확인해보십시오. 여기서 저는 파이썬 툴로 수익성 높은 체계적인 트레이딩 전략을 만드는 법을 가르쳐드립니다.
Python 및 R을 사용하여 시계열 분석, 기계 학습 및 베이지안 통계를 사용하는 고급 거래 전략에 관한 새로운 전자 책을 살펴보십시오.
2013 년 4 월 19 일 Michael Halls-Moore 작성
이 기사에서는 수익성있는 알고리즘 거래 전략을 식별하는 방법을 소개하고자합니다. 오늘 우리의 목표는 그러한 시스템을 찾고 평가하고 선택하는 방법을 자세히 이해하는 것입니다. 어떻게 전략을 식별하는 것이 개인의 선호에 관한 것인가, 전략 수행 능력, 테스트를위한 과거 데이터의 유형과 양을 결정하는 방법, 거래 전략을 냉정하게 평가하는 방법, 마지막으로 백 테스트 단계로 진행하는 방법에 대해 설명합니다. 전략 구현.
거래를위한 자신 만의 개인 선호도 확인.
성공적인 거래자가되기 위해서는 - 임의적으로 또는 알고리즘 적으로 - 정직한 질문을하는 것이 필요합니다. 트레이딩은 놀라운 속도로 돈을 잃을 수있는 능력을 제공하므로 선택한 전략을 이해하는 데 필요한만큼 "자신을 알아야합니다".
나는 거래에서 가장 중요한 고려 사항이 자신의 성격을 인식하고 있다고 말할 수 있습니다. 특히 거래 및 알고리즘 거래는 상당한 수준의 규율, 인내심 및 정서적 인 분리가 필요합니다. 알고리즘이 당신을 위해 당신의 거래를 수행하게하기 때문에, 그것이 실행될 때 전략에 간섭하지 않도록 해결할 필요가 있습니다. 이것은 특히 드로우 다운이 연장 된 기간에 매우 어려울 수 있습니다. 그러나 백 테스트에서 수익성이 높은 것으로 입증 된 많은 전략은 단순한 간섭으로 인해 망가질 수 있습니다. 당신이 알고리즘 트레이딩의 세계에 들어가기를 원한다면 감정적으로 테스트 될 것이며 성공하기 위해서는 이러한 어려움을 극복해야한다는 것을 이해하십시오!
다음 고려 사항은 시간 중 하나입니다. 풀 타임 직업이 있습니까? 파트 타임으로 일하십니까? 당신은 집에서 일하거나 매일 통근 통근을합니까? 이러한 질문은 귀하가 추구해야 할 전략의 빈도를 결정하는 데 도움이됩니다. 정규직 근무자의 경우, 일일 선물 전략이 적절하지 않을 수 있습니다 (적어도 완전히 자동화 될 때까지!). 시간 제약으로 인해 전략의 방법론이 결정됩니다. 당신의 전략이 빈번히 거래되고 값 비싼 뉴스 피드 (예 : 블룸버그 터미널)에 의존한다면 분명히 사무실에서이 전략을 성공적으로 실행할 수있는 능력에 대해 현실적이어야합니다! 많은 시간을 투자 한 사람들이나 전략을 자동화하는 기술을 배우려면보다 기술적 인 고 빈도 거래 (HFT) 전략을 고려할 수 있습니다.
일관되게 수익성있는 포트폴리오를 유지하려면 거래 전략에 대한 지속적인 연구가 필요하다는 것이 나의 믿음입니다. "전략의 밑에 레이다"영원히 체재하십시오. 따라서 거래에 할당되는 상당 부분은 지속적인 연구 수행에 있습니다. 강력한 수익성 또는 손실에 대한 완만 한 쇠퇴의 차이가 될 수 있기 때문에 이것을 할 준비가되어 있는지 여부를 자문 해보십시오.
또한 거래 자본을 고려해야합니다. 양적 전략에 대해 일반적으로 받아 들여지는 이상적인 최소 금액은 50,000 USD입니다 (영국에서는 약 £ 35,000). 제가 다시 시작한다면, 아마 더 많은 금액, 아마 100,000 USD (약 £ 70,000)로 시작합니다. 그 이유는 중개 및 고주파 전략에서 거래 비용이 극도로 비싸기 때문이며 인출시 자본을 충분히 흡수 할 필요가 있기 때문입니다. 10,000 달러 미만으로 시작하는 것을 고려하고 있다면 거래 비용이 급속히 수익에 반영되므로 하나 또는 두 개의 자산으로 거래하는 저주파 전략으로 자신을 제한해야합니다. 인터랙티브 브로커는 프로그래밍 기술을 가진 사람들에게 가장 친숙한 중개업자 중 하나 인 API로 인해 소매 계좌 최소 10,000 USD를 보유하고 있습니다.
프로그래밍 기술은 자동화 된 알고리즘 거래 전략을 수립하는 데 중요한 요소입니다. C ++, Java, C #, Python 또는 R과 같은 프로그래밍 언어에 익숙하면 엔드 투 엔드 데이터 저장소, 백 테스트 엔진 및 실행 시스템을 직접 만들 수 있습니다. 여기에는 여러 가지 장점이 있는데, 그 중 하나는 거래 인프라의 모든 측면을 완전히 인식 할 수있는 능력입니다. 또한 "기술 스택"을 완벽하게 제어 할 수 있도록 고주파수 전략을 탐색 할 수 있습니다. 이는 자신의 소프트웨어를 테스트하고 버그를 제거 할 수 있음을 의미하지만, 적어도 알 고 트레이딩 경력의 초기 부분에서는 인프라를 코딩하는 데 더 많은 시간을 소비하고 전략을 구현하는 데 더 적은 시간을 소비합니다. Excel 또는 MATLAB 거래가 편리하고 다른 구성 요소의 개발을 아웃소싱 할 수 있습니다. 그러나 나는 특히 높은 빈도로 거래하는 사람들에게 이것을 권장하지 않습니다.
알고리즘 거래를 통해 무엇을 성취하고자하는지 스스로 자문 해봐야합니다. 정기 수입에 관심이 있습니까? 이를 통해 귀하의 트레이딩 계좌에서 수입을 얻을 수 있습니다. 또는 장기 자본 이득에 관심이 있습니까? 그리고 자금을 인출 할 필요없이 거래 할 수 있습니까? 소득 의존성은 전략의 빈도를 결정합니다. 보다 정기적으로 수입을 인출하려면 변동성이 적은 (즉, 높은 Sharpe 비율) 고주파 거래 전략이 필요합니다. 장기 트레이더는보다 조용한 거래 빈도를 제공 할 수 있습니다.
마지막으로, 짧은 시간 안에 극도로 부유하게되는 개념에 속지 마십시오! Algo 거래는 부유 한 빠른 계획이 아닙니다. 무엇이든지 가난한 빠른 계획이 될 수있는 경우. 알고리즘 거래에 성공하려면 상당한 훈련, 연구, 부지런함 및 인내가 필요합니다. 일관성있는 수익성을 창출하는 데 몇 년이 걸릴 수도 있습니다.
소싱 알고리즘 거래 아이디어.
반대로 일반적인 인식에도 불구하고, 실제로 공개 도메인에서 수익성있는 거래 전략을 찾는 것은 매우 직접적입니다. 결코 오늘보다 더 쉽게 거래 아이디어를 구할 수 없었습니다. 학술 재무 저널, 인쇄 전 서버, 거래 블로그, 거래 포럼, 주간 거래 잡지 및 전문 텍스트는 아이디어를 바탕으로 수천 가지의 거래 전략을 제공합니다.
양적 거래 연구자로서의 우리의 목표는 지속적인 거래 아이디어를 제공 할 수있는 전략 파이프 라인을 수립하는 것입니다. 이상적으로 우리는 우리가 만나는 전략을 소싱, 평가 및 구현하는 체계적인 접근 방식을 만들고 싶습니다. 파이프 라인의 목표는 일정한 양의 새로운 아이디어를 생성하고 최소한의 감정적 인 배려로 이러한 아이디어의 대부분을 거부 할 수있는 틀을 제공하는 것입니다.
우리는인지 적 편향이 의사 결정 방법에 영향을 미치지 않도록 극도로주의해야합니다. 이것은 하나의 자산 클래스를 다른 자산 클래스보다 선호하는 것처럼 간단 할 수 있습니다 (금 및 기타 귀금속이 마음에 듭니다). 우리의 목표는 항상 긍정적 인 기대와 함께 지속적으로 수익성있는 전략을 찾는 것입니다. 자산 클래스의 선택은 거래 자본 제약, 중개 수수료 및 레버리지 기능과 같은 다른 고려 사항을 기반으로해야합니다.
당신이 무역 전략의 개념에 완전히 익숙하지 않다면 처음 보는 것은 설립 된 교과서를 사용하는 것입니다. 클래식 텍스트는 양적 거래에 익숙해 지도록보다 간단하고 직관적 인 다양한 아이디어를 제공합니다. 다음은 목록을 통해 작업 할 때 점차 정교 해지는 양적 거래에 익숙하지 않은 사람들에게 내가 추천하는 선택입니다.
양적 거래 도서 목록을 더 보려면 QuantStart 독서 목록을 방문하십시오.
다음으로는 거래 포럼 및 거래 블로그를 통해보다 정교한 전략을 찾을 수 있습니다. 그러나주의 사항 : 많은 거래 블로그는 기술 분석의 개념에 의존합니다. 기술적 분석에는 자산 가격의 추세 또는 반전 패턴을 결정하기 위해 기본 지표 및 행동 심리를 활용하는 것이 포함됩니다.
전체 거래 공간에서 매우 인기가 있음에도 불구하고 기술적 분석은 양적 금융 분야에서 다소 비효율적이라고 간주됩니다. 일부 사람들은 별자리를 읽거나 예측력면에서 차를 연구하는 것보다 낫지 않다고 제안했습니다. 실제로 기술적 인 분석을 이용하는 성공적인 개인이 있습니다. 그러나보다 정교한 수학 및 통계 툴박스를 갖춘 콴트로서 우리는 그러한 "TA 기반"전략의 효과를 쉽게 평가하고 정서적 고려 또는 선입견에 기초하지 않고 데이터 기반 결정을 내릴 수 있습니다.
다음은 잘 알려진 알고리즘 거래 블로그 및 포럼의 목록입니다.
보다 간단한 전략을 평가 한 경험이 있으면보다 정교한 학업을 검토해야합니다. 구독료가 높거나 일회성 비용이 들지 않으면 일부 학술지에 액세스하기 어려울 수 있습니다. 대학의 회원 또는 동창 인 경우 이러한 재정적 저널 중 일부에 대한 액세스 권한을 얻을 수 있어야합니다. 그렇지 않으면 동료 검토가 진행되는 학술 논문 초안의 인터넷 저장소 인 인쇄 전 서버를 볼 수 있습니다. 우리가 성공적으로 복제하고 수익을 얻으려는 전략에만 관심이 있기 때문에 동료 평가는 우리에게별로 중요하지 않습니다.
학술 전략의 주된 단점은 종종 시대에 뒤떨어 지거나, 모호하고 값 비싼 역사적 데이터를 필요로하거나, 비유동 자산 클래스에서 거래하거나 수수료, 미끄러짐 또는 확산을 고려하지 않을 수 있다는 것입니다. 또한 거래 전략이 시장 주문, 주문 제한 또는 중단 손실 등을 포함하는지 여부도 분명하지 않을 수 있습니다. 따라서 가능한 한 최선을 다해 전략을 반복적으로 복제하고 현실적인 거래를 추가하는 것이 절대적으로 중요합니다 당신이 거래하고자하는 자산 클래스의 많은 양상을 포함하는 비용.
다음은 아이디어를 얻을 수있는 인기있는 사전 인쇄 서버 및 재무 저널 목록입니다.
자신의 양적 전략을 수립하는 것은 어떻습니까? 일반적으로 다음 범주 중 하나 이상의 전문 지식이 필요합니다.
시장 미세 구조 - 특히 고주파 전략의 경우 시장 미세 구조, 즉 수익성을 창출하기 위해 주문서 역학을 이해할 수 있습니다. 각기 다른 시장에는 다양한 기술 제한, 규제, 시장 참여자 및 특정 전략을 통한 착취에 대한 제약이있을 것입니다. 이것은 매우 정교한 분야이며, 소매업 종사자는이 분야에서 경쟁이 어렵다는 것을 알게 될 것입니다. 특히, 경쟁에는 강력한 기술적 능력을 갖춘 대규모의 잘 자본화 된 양적 헤지 펀드가 포함됩니다. 펀드 구조 - 연금 펀드, 민간 투자 파트너십 (헤지 펀드), 상품 거래 자문사 및 뮤추얼 펀드와 같은 공동 투자 펀드는 대규모 규제와 대규모 자본 보유로 인해 제약을받습니다. 따라서 좀 더 민첩한 사람에게는 일정한 일관된 행동이 악용 될 수 있습니다. 예를 들어, 대규모 자금은 규모 때문에 용량 제약을받을 수 있습니다. 따라서 대량의 유가 증권을 신속하게 적재 (판매)해야하는 경우 "시장 이동"을 피하기 위해 비틀 거리게됩니다. 정교한 알고리즘은 자금 구조 차익 거래라고 알려진 일반적인 프로세스에서이 특이성 및 기타 특이성을 이용할 수 있습니다. 기계 학습 / 인공 지능 - 최근 몇 년 동안 금융 시장에서 기계 학습 알고리즘이 널리 보급되었습니다. Naive-Bayes 등의 분류 자 (Classifier)와 비선형 함수 matcher (신경망) 및 최적화 루틴 (유전 알고리즘)은 모두 자산 경로를 예측하거나 거래 전략을 최적화하는 데 사용되었습니다. 이 분야에 대한 배경 지식이 있다면 특정 알고리즘이 특정 시장에 어떻게 적용될 수 있는지에 대한 통찰력을 가질 수 있습니다.
물론 퀀트가 조사 할 수있는 많은 분야가있다. 이후 기사에서 맞춤 전략을 세우는 방법에 대해 자세히 설명합니다.
매주 또는 심지어 매일 이러한 소스를 지속적으로 모니터링함으로써 다양한 소스의 일관된 전략 목록을받을 수 있습니다. 다음 단계는 시간 낭비를 최소화하고 수익성이 없을 것으로 예상되는 전략에 대한 자원을 다시 테스트하는 방법으로 이러한 전략의 큰 부분 집합을 거부하는 방법을 결정하는 것입니다.
거래 전략 평가.
첫 번째, 그리고 틀림없이 가장 분명한 고려 사항은 실제로 전략을 이해하는지 여부입니다. 간결하게 전략을 설명 할 수 있습니까? 아니면 일련의 경고와 끝없는 매개 변수 목록이 필요합니까? 또한, 전략은 실제로 좋은, 견고한 기반을 가지고 있습니까? 예를 들어, 당신이 시도하고있는 패턴을 유발할 수있는 행동 적 근거 또는 자금 구조 제약을 지적 할 수 있습니까? 이 제약은 극적인 규제 환경의 혼란과 같은 정권 교체를 견디겠습니까? 전략은 복잡한 통계 또는 수학적 규칙에 의존합니까? 모든 금융 시계열에 적용됩니까 아니면 수익성이 있다고 주장되는 자산 클래스에만 해당합니까? 새로운 거래 방법을 평가할 때 이러한 요소에 대해 끊임없이 생각해야합니다. 그렇지 않으면 무익한 전략을 백 테스팅하고 최적화하는 데 많은 시간을 낭비 할 수 있습니다.
일단 전략의 기본 원칙을 이해했다면, 앞서 언급 한 성격 프로파일에 맞는지 여부를 결정해야합니다. 이것은 소리가 나지 않는 막연한 고려 사항은 아닙니다! 전략은 성능 특성이 크게 다를 것입니다. 더 중요한 기간의 인출을 처리하거나보다 큰 수익을 위해 더 큰 위험을 감수하고자하는 특정 성격 유형이 있습니다. 우리가 퀀트 (quants)로서 가능한 한 많은인지 적 편향을 시도하고 제거하고, 전략을 조심스럽게 평가할 수 있어야 함에도 불구하고, 편향은 항상 내재되어 있습니다. 따라서 우리는 전략의 성과를 평가할 수있는 일관성 있고 감정적 인 수단이 필요합니다 . 다음은 내가 잠재적 인 새로운 전략을 판단 할 수있는 기준 목록입니다.
방법론 - 전략 모멘텀은 시장 중심, 방향성, 방향성이 있습니까? 전략은 이해하기 어렵고 통계에서 박사 학위를 요구하는 정교한 (또는 복잡한!) 통계 또는 기계 학습 기술에 의존합니까? 이러한 기술로 인해 상당한 양의 매개 변수가 도입되어 최적화 편향으로 이어질 수 있습니까? 전략이 체제 변화 (즉, 금융 시장의 잠재적 새로운 규제)에 견딜 가능성이 있습니까? Sharpe Ratio - Sharpe 비율은 경험적으로 전략의 보상 / 위험 비율의 특성을 나타냅니다. 그것은 주식 곡선에 의해 견디는 변동성 수준에 대해 얼마나 많은 수익을 낼 수 있는지를 정량화합니다. 당연히, 우리는 이러한 수익률과 변동성 (즉, 표준 편차)이 측정되는 기간과 빈도를 결정해야합니다. 보다 높은 빈도 전략은 표준 편차의 샘플링 속도가 더 빨라지지만 예를 들어 전체 측정 시간이 더 짧아야합니다. 레버리지 - 수익성을 위해 전략에 상당한 영향력이 필요합니까? 전략은 수익을 내기 위해 레버리지 파생 상품 (선물, 옵션, 스왑)의 사용을 필요로합니까? 이러한 레버리지 계약은 큰 변동성을 특징으로 할 수 있으며 이로 인해 마진 콜이 쉽게 발생할 수 있습니다. 그러한 변동성에 대한 거래 자본과 기질이 있습니까? 빈도 - 전략의 빈도는 기술 스택 (기술적 전문성), 샤프 비율 및 전반적인 거래 비용 수준과 밀접하게 관련되어 있습니다. 고려해야 할 다른 모든 문제, 높은 빈도 전략은 더 많은 자본을 필요로하며, 구현하기가 더 정교하고 어렵습니다. 그러나 백 테스팅 엔진이 정교하고 버그가없는 것으로 가정하면 훨씬 높은 Sharpe 비율을 갖게됩니다. 변동성 - 변동성은 전략의 "위험"과 강하게 관련됩니다. Sharpe 비율은 이것을 특징으로합니다. 기초 자산 군의 변동성이 크지 않다면 주식 곡선의 변동성이 커지며 샤프 비율도 작아진다. 나는 물론 긍정적 인 변동성이 거의 네거티브 변동성과 같다고 가정하고 있습니다. 일부 전략은 더 큰 불리한 변동성을 가질 수 있습니다. 이러한 속성을 알고 있어야합니다. 승패, 평균 손익 - 전략은 승패와 평균 손익 특성이 다릅니다. 잃어버린 거래의 수가 승리 한 거래의 수를 초과하더라도 매우 수익성 높은 전략을 가질 수 있습니다. 기세 전략은 수익성이 있기 위해 소수의 "대히트"에 의존하기 때문에이 패턴을 갖는 경향이 있습니다. 평균 회귀 전략은 거래가 "승리자"인 경우 반대되는 경향이 있지만 손실 거래는 매우 심할 수 있습니다. 최대 인출 - 최대 인출은 전략의 지분 곡선에서 가장 큰 전체적인 최저가 하락률입니다. 기세 전략은 장기간의 축소 (많은 증분 손실 거래로 인한 손실)로 고통받는 것으로 잘 알려져 있습니다. 역사적 테스트에서 이것이 전략과 관련하여 "통상적 인 업무"라고 제안한 경우에도 많은 상인은 연장 된 인출 기간에 포기할 것입니다. 당신은 당신의 전략 거래를 중단하기 전에 어느 정도의 연체율 (그리고 어느 기간 동안)을 받을지 결정할 필요가 있습니다. 이는 매우 개인적인 결정이므로 신중하게 고려해야합니다. 용량 / 유동성 - 소매 수준에서, 당신이 (비상주 주식처럼) 고도로 유동성이없는 수단으로 거래하지 않는 한, 당신은 전략 능력에 크게 신경 쓰지 않아도됩니다. 용량은 전략의 추가 자본에 대한 확장 성을 결정합니다. 대형 헤지 펀드의 대부분은 자본 배분에서 전략이 증가함에 따라 상당한 용량 문제로 어려움을 겪습니다. 매개 변수 - 특정 전략 (특히 기계 학습 커뮤니티에있는 전략)에는 많은 양의 매개 변수가 필요합니다. 전략에 필요한 추가 매개 변수가 있으면 최적화 바이어스 ( "곡선 맞춤"이라고도 함)에 취약 해집니다. 가능한 한 적은 수의 매개 변수로 전략을 타겟팅하고 전략을 테스트 할 수있는 충분한 양의 데이터가 있는지 확인해야합니다. 벤치 마크 - 거의 모든 전략 ( "절대 수익"으로 특징 지우지 않는 한)은 일부 성능 벤치 마크에 비해 측정됩니다. The benchmark is usually an index that characterises a large sample of the underlying asset class that the strategy trades in. If the strategy trades large-cap US equities, then the S&P500 would be a natural benchmark to measure your strategy against. You will hear the terms "alpha" and "beta", applied to strategies of this type. We will discuss these coefficients in depth in later articles.
Notice that we have not discussed the actual returns of the strategy. Why is this? In isolation, the returns actually provide us with limited information as to the effectiveness of the strategy. They don't give you an insight into leverage, volatility, benchmarks or capital requirements. Thus strategies are rarely judged on their returns alone. Always consider the risk attributes of a strategy before looking at the returns.
At this stage many of the strategies found from your pipeline will be rejected out of hand, since they won't meet your capital requirements, leverage constraints, maximum drawdown tolerance or volatility preferences. The strategies that do remain can now be considered for backtesting . However, before this is possible, it is necessary to consider one final rejection criteria - that of available historical data on which to test these strategies.
Obtaining Historical Data.
Nowadays, the breadth of the technical requirements across asset classes for historical data storage is substantial. In order to remain competitive, both the buy-side (funds) and sell-side (investment banks) invest heavily in their technical infrastructure. It is imperative to consider its importance. In particular, we are interested in timeliness, accuracy and storage requirements. I will now outline the basics of obtaining historical data and how to store it. Unfortunately this is a very deep and technical topic, so I won't be able to say everything in this article. However, I will be writing a lot more about this in the future as my prior industry experience in the financial industry was chiefly concerned with financial data acquisition, storage and access.
In the previous section we had set up a strategy pipeline that allowed us to reject certain strategies based on our own personal rejection criteria. In this section we will filter more strategies based on our own preferences for obtaining historical data. The chief considerations (especially at retail practitioner level) are the costs of the data, the storage requirements and your level of technical expertise. We also need to discuss the different types of available data and the different considerations that each type of data will impose on us.
Let's begin by discussing the types of data available and the key issues we will need to think about:
Fundamental Data - This includes data about macroeconomic trends, such as interest rates, inflation figures, corporate actions (dividends, stock-splits), SEC filings, corporate accounts, earnings figures, crop reports, meteorological data etc. This data is often used to value companies or other assets on a fundamental basis, i. e. via some means of expected future cash flows. It does not include stock price series. Some fundamental data is freely available from government websites. Other long-term historical fundamental data can be extremely expensive. Storage requirements are often not particularly large, unless thousands of companies are being studied at once. News Data - News data is often qualitative in nature. It consists of articles, blog posts, microblog posts ("tweets") and editorial. Machine learning techniques such as classifiers are often used to interpret sentiment . This data is also often freely available or cheap, via subscription to media outlets. The newer "NoSQL" document storage databases are designed to store this type of unstructured, qualitative data. Asset Price Data - This is the traditional data domain of the quant. It consists of time series of asset prices. Equities (stocks), fixed income products (bonds), commodities and foreign exchange prices all sit within this class. Daily historical data is often straightforward to obtain for the simpler asset classes, such as equities. However, once accuracy and cleanliness are included and statistical biases removed, the data can become expensive. In addition, time series data often possesses significant storage requirements especially when intraday data is considered. Financial Instruments - Equities, bonds, futures and the more exotic derivative options have very different characteristics and parameters. Thus there is no "one size fits all" database structure that can accommodate them. Significant care must be given to the design and implementation of database structures for various financial instruments. We will discuss the situation at length when we come to build a securities master database in future articles. Frequency - The higher the frequency of the data, the greater the costs and storage requirements. For low-frequency strategies, daily data is often sufficient. For high frequency strategies, it might be necessary to obtain tick-level data and even historical copies of particular trading exchange order book data. Implementing a storage engine for this type of data is very technologically intensive and only suitable for those with a strong programming/technical background. Benchmarks - The strategies described above will often be compared to a benchmark . This usually manifests itself as an additional financial time series. For equities, this is often a national stock benchmark, such as the S&P500 index (US) or FTSE100 (UK). For a fixed income fund, it is useful to compare against a basket of bonds or fixed income products. The "risk-free rate" (i. e. appropriate interest rate) is also another widely accepted benchmark. All asset class categories possess a favoured benchmark, so it will be necessary to research this based on your particular strategy, if you wish to gain interest in your strategy externally. Technology - The technology stacks behind a financial data storage centre are complex. This article can only scratch the surface about what is involved in building one. However, it does centre around a database engine, such as a Relational Database Management System (RDBMS), such as MySQL, SQL Server, Oracle or a Document Storage Engine (i. e. "NoSQL"). This is accessed via "business logic" application code that queries the database and provides access to external tools, such as MATLAB, R or Excel. Often this business logic is written in C++, C#, Java or Python. You will also need to host this data somewhere, either on your own personal computer, or remotely via internet servers. Products such as Amazon Web Services have made this simpler and cheaper in recent years, but it will still require significant technical expertise to achieve in a robust manner.
As can be seen, once a strategy has been identified via the pipeline it will be necessary to evaluate the availability, costs, complexity and implementation details of a particular set of historical data. You may find it is necessary to reject a strategy based solely on historical data considerations. This is a big area and teams of PhDs work at large funds making sure pricing is accurate and timely. Do not underestimate the difficulties of creating a robust data centre for your backtesting purposes!
I do want to say, however, that many backtesting platforms can provide this data for you automatically - at a cost. Thus it will take much of the implementation pain away from you, and you can concentrate purely on strategy implementation and optimisation. Tools like TradeStation possess this capability. However, my personal view is to implement as much as possible internally and avoid outsourcing parts of the stack to software vendors. I prefer higher frequency strategies due to their more attractive Sharpe ratios, but they are often tightly coupled to the technology stack, where advanced optimisation is critical.
Now that we have discussed the issues surrounding historical data it is time to begin implementing our strategies in a backtesting engine. This will be the subject of other articles, as it is an equally large area of discussion!
Just Getting Started with Quantitative Trading?
3 Reasons to Subscribe to the QuantStart List:
1. Quant Trading Lessons.
You'll get instant access to a free 10-part course packed with hints and tips to help you get started in quantitative trading!
2. All The Latest Content.
Every week I'll send you a wrap of all activity on QuantStart so you'll never miss a post again.
Real, actionable quant trading tips with no nonsense.
Automated Trading Systems for Savvy Investors.
Stocks, ETF’s, & Futures Algorithmic Trading Strategies.
In a headline driven world, with superfast algorithmic trading computers spitting out orders faster than anyone could possibly respond to a rumor, fact, or breaking news, what’s an trader or investor to do?
Invest in a systematic, disciplined strategy, like our AlgoTrades Algorithmic Trading Strategies . Based on a six month rolling time interval our algorithmic trading systems has demonstrated a strong negative correlation to the equities market during pullbacks, and even multi-year bear markets.*** In other words, over a given six-month period, our trading systems tend to grow your trading account, when the equity market have been declining. We have built our algorithms for capturing trends in various markets like the S&P500 index, Dax index, individual stocks, and event he volatility index. Using either futures, exchanged traded funds (ETFs), or stocks we can take full advantage the monthly stock market gyrations. Use our algorithmic trading system and you can rest assured that you have some of the best automated trading systems working for you.*
Algorithmic Trading 101.
Algorithmic trading is here to stay. Watch CNBC, and see the empty floor of the once glorious New York Stock Exchange.
Billions of shares still trade on the floor each day, but the majority of those buy and sell orders are done by computers. Gone are the days of the specialist, market-maker or floor trader…
Let’s discover what trading algorithms can do, and how you can become an algo trader or developer.
What is Algorithmic Trading?
Algorithmic trading is a process that uses computers, to place trades perfectly. The key benefit is the computer and the algorithm, never breaks your rules.
This method is often called algo trading. Other variations include automated trading, and black-box trading. High-frequency trading or “HFT” is a specialized form of algorithmic trading. To give you a complete picture, we should also mention gray-box trading.
A black-box allows the computer to make 100% of the decisions. A gray-box allows for discretionary decisions by the trader.
Algo trading is fascinating and mysterious, but it simply means your trade ideas, are executed flawlessly. The computer does all the work, after you input your criteria.
Notice I said “places trades perfectly,” and “executed flawlessly.” When we develop an algorithm for trading, our goal is to write a program, that follows our strategy, 100% of the time.
The algo, is a set of specific criteria, that:
1: Finds trades that match our edge.
2: Identifies the predefined entry criteria.
3: Place the trade entry.
4: Analyzes and tracks price movement, bids, offers and transactions.
5: Identifies the predefined exit criteria.
6: Places the exit orders to complete the trade.
Step #1 is crucial to the process. A well defined edge, identifies the opportunity. Today’s powerful computers allow traders like us, to spot and trade opportunities, previously only available to the big money institutions.
A simple algo strategy looks like this.
A) Buy one contract (or 100 shares, if stock trading) when the last price, trades above the previous day’s high.
B) Sell the new position, any time the price has a .35 decline.
This algorithm is pure. There are no qualifiers to fine-tune the edge. Qualifiers could be:
*The last price must be above today’s open price.
*The last price must be above the previous day’s high, for at least 30 minutes.
*The last price must be higher than the open price, on the first day of the month.
*The SPY ETF must be net positive for the day.
Developing an edge, and converting it into programming code, is where the money is earned in algorithmic trading. Qualifiers force price action and volume, to unfold according to our plan, or we do not enter a new trade.
Algorithmic strategy development, is growing faster than personal computers in the early 1980’s. Today it is estimated that up to 70% of all trades in the US Equity markets are executed by computers.. There has never been a better time to become an algo trader or developer.
To put the growth in perspective, a Google search on “algo trading” returns 1.2 million results. A search using Google Trends, for the word “algo” and “HFT” have more than doubled the last 5 years.
How to Develop a Profitable Algorithmic Strategy.
A winning algo edge, means you have identified a moment in price, volume and time, that occurs more often than not.
The trading term for this is trade expectation.
You are seeking a reason to allocate capital, because you believe the potential profit, is worth the potential risk. Algorithmic trading strategies and programs, scan all available data, and execute trades when your edge is valid.
Identifying an edge is rather simple. Choosing the best qualifiers that match your goals, resources, and capital is where your algo becomes special.
There are essentially three best-practices to validate your algo strategy: back-testing | simulated trading | live trading.
Algo Trading Development: How to Validate Your Edge.
Back-testing an algo strategy involves simulating the performance of a trading strategy using historical data. This means you test a strategy, using price action that has already occurred. This form of validation, gives you an opportunity to estimate the effectiveness of your edge.
Back-testing your algo is a starting point.
It should not be used as final validation, but works well to determine if your edge is worth pursuing. One caveat to consider with back-testing, and then analyzing your results, is the trap of optimization.
It’s tempting to tweak your algo to match the previous data, so it generates impressive results. This is a vicious trap of perfection. Once you have preliminary validation, move onto simulated trading.
Simulated trading, tracks your algo strategy against live market data. You get results and feedback without the benefit of knowing the outcome of price action. In essence, you cannot choose the perfect day to validate your edge.
This process is obviously slower, because you can only test one day at a time. The benefit is you cannot make tweaks in hindsight. You let your algo strategy run the entire day and then review the data for any possible changes.
Live trading to validate your algo strategy is by far the most effective method for a true validation. You get feedback that shows actual executions, and how your trading program performed within the two critical market conditions of, liquidity and volatility.
Algorithmic Testing applied to Liquidity and Volatility.
While valuable, back-testing and simulated trading provide feedback for trades that never occur. This can give false hope.
Because back-testing and simulated trading never add or removes shares from a market, you will truly never know performance until you attempt trades that interact with available shares in the market.
Liquidity identifies the ease with which you can execute a trade, because there are shares quoted at the bid or ask, and your algo, and a transaction took place. You will see this occur on the “tape.”
As you develop and test your algorithmic strategy, you must factor in the contract size (or share size) you plan to trade, and the ease with which you can reasonably execute that trade.
The less liquidity, your trading strategy will need to consider “slippage” into performance.
Slippage means you anticipate not receiving the perfect fill price that you received while back-testing or simulated trading. Large orders, without liquidity, can be a slippage disaster.
Volatility represents, how fast and how far, a security moves, within a designated period of time. In trading lingo, many who use technical analysis determine volatility, by using the Average True Range indicator. Or “ATR”
ATR determines how far a security trades from high, to low over a designated period of time. For example; the ATR of BOA, Bank of America is .58 for the last 14 days. The ATR for AMZN, Amazon is $27.52.
This means if you are trading AMZN, the swings are much wider and share size must match your risk tolerance.
The same applies to futures contracts. Trading the S&P 500 is very different from trading the Eurodollar. Liquidity and volatility are key elements to consider when validating your algo.
Algorithmic Trading Strategies.
There are literally thousands of potential algorithmic trading strategies, here are few of the most common to jump start your journey:
Trend Following Algos: Your edge is determined by identifying an obvious direction to order flow. This edge could be over months, or over minutes. The key to success with this strategy is defining the time frame to operate.
The objective is to pick a side, then pick a spot to enter. The shorter the time frame, the more frequently you will trade because the trend will change quicker and you will receive more signals.
Momentum-Based Algo Strategies : Momentum algos look for the futures contract to move quickly in one direction on high volume.
This edge seeks to quickly enter on a pause, ride the momentum, and then exit on the next pause. This algo does not ride big winners. The plus side is it should not have big losers either. Momentum strategies in the direction of the order flow, are generally regarded as smart trading.
Counter-Trend Algo Strategies: This strategy typically identifies a saturation point in momentum, and “fades” the move, instead of trading with the momentum. counter-trend trading is a specialized form of allocating capital and not for the faint-of-heart.
This last statement is especially true because of algorithms! There was a period in time, when price action had a nice fluid back-and-forth rhythm. If you were in a losing trade, there was a good chance you could, “trade out of a losing position.”
Algos have changes that dramatically. Today’s algo driven world will see multiple algorithmic programs trigger at the same time, and price explodes or implodes in one direction. Leaving no reprieve for the counter-trend neophyte.
Reversion to the Mean Algo Strategies: Imagine a rubber band that typically expands to “10.” When it gets that far, it pulls back, or reverts to it’s normal distance. This is reversion to the mean algo trading. Your algo dissects data and places orders when a futures contract expands beyond it’s mean.
The goal of this trade, is to time the entry, at an extreme price point, anticipating a profitable reversal.
Scalping Algo Strategies: Certain markets, offer opportunities to track large buyers and sellers. The strategy here, is to “capture the spread.” This means buying on the bid, and then selling on the offer, for a profit of a few ticks.
This algo strategy was the bread-and-butter for many day traders/floor traders over the years. Tighter spreads and faster computers, have made this challenging for the manual trader. One door closes and one door opens, scalping opportunities have opened for smart algo developers and traders.
HFT | High Frequency Trading Algos: This is the algo that gets all the publicity. The perceived money-machine for the privileged quant-wizards. HFT programs execute within a mili second and require what is known as “co-located” servers near an exchange.
The speed of the execution is crucial to success.
The ever expanding industry of computerized trading, is a changing landscape that appears to have no bounds, save imagination, and computing speed.
The bottom line, there are a million ways to describe algorithmic trading, and it can appear intimidating, but the “little guy” can and should, seek to compete. Access to programmers, consultants, high-speed access and powerful server computers, are within your reach.
For all the fancy trader lingo, this is simply automated trading. It’s just a matter of your time frame.
Visual Programming Language for Algo Trading.
CLICK THE IMAGE TO EXPAND FULL VIEW.
Visual programming language, allows futures and options traders to design, create and deploy automated high frequency trading algorithms without having to write a single line of code.
With an easy-to-use, drag-and-drop interface, users apply building blocks to construct circuit-like designs on their computer screens.
The language and program, offers the flexibility to design your own strategy, and the opportunity to study and implement, pre-made strategies.
The preferred visual programming language for Professor Algo consultantsand certified partners is Algo Design Lab by TT.
When an “ADL” strategy is deployed to the trade server, the strategy is compiled and run as if it were a traditional computer program. ADL makes algorithm design accessible to anyone, not just advanced programmers.
ADL provides safety measures (at design time and at run time) that are not available in traditional programming context, thereby reducing risk and the time required to design, create and test programs while providing a safer trading environment.
CLICK THE IMAGE TO EXPAND FULL VIEW.
What once took days or weeks, now takes minutes.
In addition, by handling code-writing “behind the scenes” for the user, ADL lowers risks for traders, trading firms, and exchanges – especially for high-frequency automated trading.
**Professor Algo Note: Visual Programming Language is the focus of our ADL Certification Program. Watch the Quick-Start Video Below to Learn More.
Algo Trading Languages for Coders and Developers.
Java is popular and with good reason. This sophisticated language is built around a key benefit, code a program once, and you can integrate seamlessly across platforms.
Another advantage, fueling Java’s ascent is the language is easy to implement (for coders) and is reliable. It can be debugged, which places an emphasis on checking for errors. Issues that wouldn’t appear until execution time when using other languages are found quickly with Java.
Python is known as, an object-oriented language. The programming language is interactive, and portable, which makes it easy to work with (for professional coders).
Its programming structure is well organized, which means that longtime-coders can quickly adapt, and begin producing programs with Python.
This general-purpose language is typically used in systems programming, and is quite popular. C++ is an advanced language that is not for newbies.
It was designed with a bias toward system programming and embedded, resource-constrained and large systems, with performance, efficiency and flexibility of use as its design highlights.
No comments:
Post a Comment